Table II Identification of Achievable Performance Standards Source Category: Bakery Ovens | | Rule/Measure | | | | | | | |--------------|--|---|--|---|---|--|--| | Rule/Measure | Bay Area AQMD Rule 8-42,
Large Commercial Bread
Bakeries, adopted 9/20/89,
amended 6/1/94 | San Diego Co. APCD
Rule 67.24, Bakery Ovens,
adopted 6/7/94, amended and
effective 5/15/96 | Sacramento Metropolitan
AQMD Rule 458, Large
Commercial Bread Bakeries,
adopted 6/7/94, amended
9/5/96 | South Coast AQMD
Rule 1153, Commercial
Bakery Ovens, adopted
1/4/91, amended 1/13/95 | U.S. EPA, Alternative
Control Technology
Document for Bakery Oven
Emissions, 12/92 | | | | Exemptions | less than 150 pounds ethanol per operating day, averaged | Bakery ovens at stationary sources where combined rated heat input capacity of all bakery ovens is less than 2 million BTU per hour Bakery ovens at stationary sources where uncontrolled VOC emissions from all bakery ovens combined is less than 50 tons per year | Small bakeries that emit less
than 100 pounds total VOC
per day (18 tons per year) | Existing ovens that emit less than 50 pounds uncontrolled VOC per operating day (9 tons per year) | | | | ## Table II Identification of Achievable Performance Standards Source Category: Bakery Ovens | | Rule/Measure | | | | | | | |---------------|--|---|--|--|---|--|--| | Rule/Measure | Bay Area AQMD Rule 8-42,
Large Commercial Bread
Bakeries, adopted 9/20/89,
amended 6/1/94 | San Diego Co. APCD
Rule 67.24, Bakery Ovens,
adopted 6/7/94, amended and
effective 5/15/96 | Sacramento Metropolitan
AQMD Rule 458, Large
Commercial Bread Bakeries,
adopted 6/7/94, amended
9/5/96 | South Coast AQMD
Rule 1153, Commercial
Bakery Ovens, adopted
1/4/91, amended 1/13/95 | U.S. EPA, Alternative
Control Technology
Document for Bakery Oven
Emissions, 12/92 | | | | Applicability | Bread ovens at large
commercial bread bakeries
that emit precursor organic
compounds | VOC during baking of yeast- | Bread ovens at large
commercial bread bakeries
that emit VOC | Commercial bakery ovens with rated heat input capacity of 2 million BTU per hour or more and with average daily emission of 50 pounds or more of VOC | | | | | Comments | Thermal incineration and catalytic incineration are technically and technologically feasible and cost effective (Technical Assessment Report, 7/27/89) | Catalytic oxidizer most cost-
effective (Socioeconomic
Impact Assessment, 4/94) | Thermal incineration and catalytic incineration most technically feasible (Staff Report, 6/7/94) | Regenerative thermal oxidation and catalytic oxidation technologically and economically feasible (Staff Report, 11/19/90) | Direct flame thermal oxidation is technically feasible but relatively expensive Regenerative oxidation is feasible Catalytic oxidation is technically and economically feasible | | | S:\DRAT\WEBDOCS\BAKE2.WP6